
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 22,225-240 (1 996)

ITERATIVE SOLUTION OF THE INCOMPRESSIBLE

SURFACE
NAVIER-STOKES EQUATIONS ON THE MEIKO COMPUTING

B. A. TANYI* AND R. W. THATCHER
Manchester Centre for Computational Mathematics, Department of Mathematics, UMIST, Manchestec UK.

SUMMARY

The numerical discretization of the equations governing fluid flow results in coupled, quasi-linear and non-
symmetric systems. Various approaches exist for resolving the non-linearity and couplings. During each non-linear
iteration, nominally linear systems are solved for each of the flow variables. Line relaxation techniques are
traditionally employed for solving these systems. However, they could be very expensive for realistic applications
and present serious synchronization problems in a distributed memory parallel environment. In this paper the
discrete linear systems are solved using the generalized conjugate gtadient method of Concus and Golub. The
performance of this algorithm is compared with the line Gauss-Seidel algorithm for laminar recirculatory flow in
uni- and multiprocessor environments. The uniprocessor performances of these algorithms are also compared with
that of a popular iterative solver for non-symmetric systems (the Gh4RES algorithm).

KEY WORDS: domain decomposition; line GaussSeidel; conjugate gradient

1 . INTRODUCTION

Computational fluid dynamics (CFD) is a major application area of high-performance computing.
Despite recent advances in both hardware and software design, realistic simulations still require long
run times. Using the most sophisticated machine and software tools on inefficient algorithms or poor
solution procedures blurs the potential gains of the resources. A better appreciation of the benefits of
such resources therefore requires research into improving the basic solution procedures.

There are various ways of pursuing parallelism; the one described here uses identical copies of the
programme running in parallel on each processor acting on a local data subset. For the target machine
(the Meiko Computing Surface) each processor has its own local memory and thus the global solution
is realized by occasional data exchanges (communications) between the processors. This geometric
decomposition, generally referred to as domain decomposition, is particularly suitable for porting CFD
applications onto distributed memory machines because of the local character of the governing
differential operator. Generally, however, the main bottleneck with such machines is the cost of
effecting global communications necessitated by, for example, the formation of inner products in the
conjugate gradient algorithm or parallel convergence monitoring. Also, depending on the nature of the
algorithm being parallelized, it may be necessary for a rethinking of the sequential algorithm in a
parallel environment. Because of the possible differences in the sequential and parallel implementa-

* Present address: Department of Computing, Imperial College, 180 Queens Gate, London SW7 2BZ, U.K.

CCC 027 1-2091/96/040225-16
0 1996 by John Wiley & Sons, Ltd.

Received July 1994
Revised March I995

226 B. A. TAW1 AND R. W. THATCHER

tions, the numerical efficiency E,, is generally employed to measure the convergence rate of the
parallel implementation and the parallel efficiency cpar is used to measure the success of the
interprocessor communications, load balancing, etc.

In this paper the incompressible Navier-Stokes equation is solved using a pressure-correction-based
(SIMPLE-type) procedure.’ During each non-linear iteration, approximate solutions to the nominally
linear discrete systems are obtained using the CG a lg~r i thm.~~” Here we accelerate the algorithm using
a very simple preconditioner and compare its performance with the traditional tridiagonal matrix
algorithm (TDMA) in uni- and multiprocessor distributed memory environments. To appreciate the
effectiveness of the CG algorithm, we implemented and compared its convergence rate with that of a
similar solver (the GMRES algorithm) with the same preconditioner on a laminar recirculatory flow
problem.

2. NUMERICAL FORMULATION AND SOLUTION PROCEDURE

The fluid flow algorithm employed in this study is capable of solving twodimensional laminar and
turbulent incompressible flows. The standard k--E model of Launder and Spalding3 is used with the wall
function approach for near-wall region^.^,^ The general differential equation governing the transport of
the general flow variable 4 can be written in Cartesian co-ordinates in the form

where u and v are the velocity components in the two co-ordinate directions, r is the diffusion
coefficient and S+ is the source term for the variable 4. Thus, from the above, turbulent flow modelling
requires solving five dependent variables: the x- and y-momentum equations, the continuity constraint
and the turbulent kinetic energy and dissipation equations (k and E respectively). In a laminar flow
situation only the first three variables are considered.

The solution domain is discretized into finite volume cells.’ A staggered grid system is adopted
where scalar variables (e.g. pressure, density) are located at the centre of the control volumes and the
velocity components are located at the faces of the control volume^."^ The combined convection and
diffusion fluxes across the control volume faces are computed using the hybrid scheme.’ For each
control volume the finite volume scheme results in an algebraic equation of the form

‘PQP = a n b 4 n b + S U *
nb=E.W.N.S

for each dependent variable, where 4 = u, v, k, E or p‘ (see below). The discrete coefficients are such
that

up = anb -sPv
nb=E.W,N,S

(3)

where Sp is the coefficient of dP in the source term linearization expression and is chosen such that S,
is unconditionally negative. Su includes the constant part of the discrete form of the original source
term in equation (1) plus the additional terms that cannot be approximated by the values of 4 at the
neighbouring grid nodes (E, W, N, S). The term r$p refers to the grid point at the centre of the control
volume. Thus for all the grid points the following system results:

B+ = C, (4)

where B is the pentadiagonal coefficient matrix in which all spatial couplings depending on the
convective and diffusive transport of 4 are involved and c contains the Dirichlet boundary conditions

ITERATIVE SOLUTION OF INCOMPRESSIBLE N-S EQUATIONS 227

as well as couplings that are not considered in B. Here a pressure correction scheme is employed, the
full details of which are given in References 1 and 5 . The momentum equations are solved for a given
pressure distribution p* to yield a tentative velocity field u*, v*. Since u* and v* do not satisfy the
continuity constraint, they and the guessed pressure must be updated. This involves solving a pressure
correction equation @'-equation). For turbulent flow, solution of the p'-equation is followed by solution
of the turbulent kinetic energy and dissipation equations. A complete execution of each of the above
steps constitutes a non-linear or outer iteration. The process is repeated with the corrected pressure as
the new guessed pressure until convergence. Global convergence monitoring takes place after each
non-linear iteration as described later.

Because of the non-linearities and couplings, underrelaxation is necessary. It is introduced in the
following way:

where 0 < -o < 1 is the underrelaxation factor. The value of -o strongly influences the convergence rate
of the outer iteration, but in general an optimal value can only be found experimentally. In the notation
of equation (4) the resulting system solved for the (n + 1)th iteration is

(B + T D) & ' + ' =c+-D$"' 1 --o
0

where D is the diagonal matrix whose elements are those of the main diagonal of matrix B in equation
(4). Equation (6) can be written as

A+"+' = b. (7)

Since 0 < -o < 1, the diagonal dominance of matrix A is enhanced by the above underrelaxation
procedure. During each non-linear iteration, systems such as (7) are solved for each of the flow
variables. Line relaxation techniques are generally employed for solving such systems.

We consider the portion of the Cartesian grid illustrated in Figure 1. The points P, E, W, N and S are
grid nodes on the vertical grid lines. Focusing attention on grid line i, in the x-direction the discrete
equation for points on this line can be written in the form

aj41 = 8j4j+1 + ~ jb j - I + (8)

where, from equation (2), aJ = up, p, = uN, y, = as and T, = uE& + uw4w + S,. The grid system
employed here is such that and bNJ are known for an NI x NJ grid. Thus for j = 2 to NJ - 1 a
system of the form

-Y2 a2 -82

-Y3 a3 -83
-Y4 a4 -84 i

results for points on line i.
The line-by-line solution procedure begins with a guess of the $-values over the whole grid. These

are then improved from one line to the next. When solving any particular line, the values of 4 on the
neighbouring lines are their latest &values or initial guessed values; thus the TS are known. The
tridiagonal systems for each grid line are solved using the tridiagonal matrix algorithm (see References
1 and 6 for details). Depending on the nature of the flow situation, it may be necessary to implement

228 B. A. TAW1 AND R. W. THATCHER

t
lane i

Figure 1. Vertical grid line

different directions of traverse across the flow domain (e.g. in ADI). For each flow variable a tentative
solution is obtained by employing a number of ‘line sweeps’, the optimal number (which can only be
obtained experimentally) depending on the grid size and the flow variable in question.

Despite the reliability and ease of implementation of line relaxation techniques, they can be very
time-consuming for realistic applications. As a result, researchers are turning towards Krylov or
conjugate direction methods. However, since systems such as equation (7) are in general non-
symmetric (except for the pressure correction system’s4, the standard CG algorithm for symmetric,
positive definite systems7 is inapplicable. A number of algorithms have been developed for general
non-symmetric systems. Two such algorithms were used in this study; they are the GMRES algorithm
of Saad and Shultz’ and the conjugate gradient (CG) algorithm for linear systems developed by
Concus and Golub.2

Each iteration of the GMRES algorithm, i.e. steps 2-4 in Algorithm 1, consists of two main steps.
The first step is an Arnoldi step which consists of finding an orthogonal basis of the Krylov subspace
K, via Gram-Schmidt orthogonalization. The second step involves finding the approximate solution
x, in the affine space (xg + K,) which minimizes the residual norm. This is found by solving the least
squares problem whose coefficient matrix is the (rn + 1) x rn upper Hessenberg matrix H,. Because of
the special structure of Hm,8s9 the least squares problem is solved by a QR factorization7 of matrix H,
which is updated at each step of the Arnoldi process in step 2. The details of the practical
implementation of the algorithm are explained in References 9 and 10.

The performance of the GMRES algorithm generally depends on the number of steps performed
between restarts rn. Large values of rn are expected to yield faster convergence but require more storage
and more time per iteration. A compromise between the two is therefore necessary. For fluid flow
problems the dimension of the Krylov subspace does not need to be Large, since we seek only a
tentative improvement in the solution during each outer iteration. In the implementation of the GMRES
algorithm here the value of rn was fixed, with a different value (possibly) for each of the flow variables
solved.

As in the implementation of the GMRES algorithm described above, & in the CG algorithm is
kept small during each non-linear iteration, with a different value (generally) for each of the flow
variables (Algorithm 2). The optimal vlaues for rn and k,,,= can only be obtained experimentally and
are usually a fimction of the grid size and the flow variable being solved. A residual termination
criterion can be used to control these values, but the strong non-linearity and coupling often result in
erratic residual patterns. I

ITERATIVE SOLUTION OF INCOMPRESSIBLE N-S EQUATIONS 229

Algorithm 1 - GMRES algorithm

1 . Start : choose an i n i t i a l solution and a

2. Arnoldi process :
dimensionrn oftheKrylov subspace

solve M b = (h - A%) f o r ro

* f o r j = 1,2 ,...., mdo
set B = llbll and = r o / P

solve M w = A y j f o r w
fori = 1,2 ,...., jdo

endfor
hi, = (w ~ v ;)

Cj+r = w - X:=i h,,jv,
hj+r j = llcj+1 I1
'j+l = ~ j + ~ / h j + 1 , ~

endfor
f * Define H,as the (m + 1) by m upper Hessenberg matrix

whose non - zero entr ies are the coef f ic ients hi,,
3. Formthe approximate so lut ion:

f ind the vector which minimizes llPer - H,yII,

compute x,,, = F,, + Y,ym
where e, = [1,0,0, ..., 0IT

/ * Y, = [vr,vz, ... v,] * f
4. Restart : if s a t i s f i e d stop, e l s e s e t xo t x,

and goto step 2

Preconditioning is crucial in the performance of Krylov solvers. Two simple preconditioners were
employed in this study. We implemented both the point Jacobi and symmetric line Gauss-Seidel
algorithms as preconditioners. The matrix M in the GMRES and CG algorithms is the preconditioning
matrix. Concus and Golub' assumed a positive definite matrix M, but this assumption is not
necessary.'' If the matrix A in equation (7) is split into its lower triangular, diagonal and upper
triangular parts, i.e. A = L + D + U, then the Jacobi method corresponds to M = D. The symmetric line
Gauss-Seidel preconditioning employed here involved applying the TDMA line solver described
above in alternating directions in the horizontal plane. Implementation details and a more mathematical
presentation are described in Reference 5 .

The global convergence is assessed at the end of each non-linear iteration on the basis of a 'residual
source' criterion. The iterative procedure is considered to have converged if the sum of the absolute
normalized residuals for u, v and all the variables as well as the mass source of the pressure correction
system is less than a prescribed tolerance:

max(resor,, resor,, resor,,,, . . .) < tol, (9)

where

resorm = (C "u) , - (PU),lA.Y + by) , - (PV),l~I)/Min. (1 1)

Here e, w, n and s are the faces of the control volume and Ax x Ay x 1 is its volume. Fin,,#, and Mi, are
respectively the characteristic momentum and mass flow scales4

230

/
/
/

u = o
11 = 0

/

/

0. A. T A W 1 AND R. W. THATCHER

/
/

Re = p u l , d L / p = 200
Ui,d = 0.2
p = 1000 u = o
p = l o = o
L = l

/
/

3. PROBLEM SPECIFICATION AND PROGRAMMING ENVIRONMENT

The test problem used here is that of laminar flow in a square lid-driven cavity. The problem
specification is depicted in Figure 2. The lid slides across the cavity, inducing a zone of recirculatory
fluid. If the grid is sufficiently h e , small counter-rotating eddies can be expected in the comers. The
square cavity flow problem was chosen because of its highly recirculatory nature and the fact that the
expected flow field is well understood (it has been studied by many workers; see e.g. Reference 12).
Also, the singularity in the problem excites bad behaviour in an algorithm. The mesh sizes used are
36 x 36, 72 x 72 and 144 x 144 with a regular distribution.

u = o u = o

Figure 2. Flow specification

ITERATIVE SOLUTION OF INCOMPRESSIBLE N-S EQUATIONS 23 I

All the numerical results were obtained using the Meiko Computing Surface (MCS). The MCS is a
distributed memory transputer-based machine with T800 transputers for which the link speed is
20 Mbits s- ' . A full description of this machine can be found in Reference 13. The programming
language used here is FORTRAN. This was facilitated in the parallel implementations by the message-
passing harness on the MCS called CSTOOIS;'~ it allows parallel implementations to be undertaken in
FORTRAN or C. The distance between the processors is an important consideration when there is
much interprocessor communication. The choice of an appropriate connection topology can reduce
this overhead. For the square cavity solution domain the processor lay-out shown in Figure 5(b) (see
Section 5) was employed. Each column and row of processors has a ring connection. These rings are
used for implementing global communications. From the configuration this is a two-step process. First,
all the processors in the same column form the partial sum for control volumes in their respective
subdomains using a systolic loop. These partial sums are then added up across the rows to form the
global variable on each processor. Interprocessor communications are effected via transport^'^ and all
the communications are of the blocked synchronous mode.

4. SEQUENTIAL IMPLEMENTATION RESULTS

Laminar flows are commonly used to test the performance of numerical algorithms, since the effects of
the pressure-velocity coupling which usually controls the convergence of the algorithm are most
clearly evident for such flows. For the segregated solution approach adopted in the fluid flow code used
here, the convergence rate is a fimction of the underrelaxation factor w employed and the degree to
which each of the variables is solved during each non-linear iteration. The optimal underrelaxation
factor is usually a fimction of the mesh size. For the 36 x 36 mesh flow the optimal value is
approximately 0.8 (= w, = w,) and for the 72 x 72 and 144 x 144 grid problems it is approximately
0.9 (= w, = w,). The pressure correction system is not relaxed in the procedure used in the code
(SIMPLEC). For all the results presented here, these values were used for all the iterative solvers-line
Gauss-Seidel, GMRES and CG algorithms.

Table 1-111 give the iterations for convergence of the various solvers for the same convergence
criterion (to/= 0-5 x lop3) using different inner iteration combinations. The initial flow field used is
uiJ = vij = lo-' and pi , , = 0. For pressure-correction-type procedures a higher number of iterations on
the pressure correction system generally results in a faster and more stable solution.' Table I presents
the numbers of iterations for various sweep combinations of the line Gauss-Seidel solver. Two
implementations of this solver are reported. In the first (represented by TDMA) the Gauss-Seidel
iteration is applied progressively on the vertical grid lines from the left of the solution domain to the
right. In the other case (SGS, symmetric Gauss-Seidel) the iteration is applied in alternating directions,
i.e. right to left, left to right, right to left, etc. The results show that sweeping successively from the left
of the grid to the right maximizes the rate of flow of information across the solution domain for the test
problem used here. The optimal application pattern of the line Gauss-Seidel iteration generally
depends on the nature of the flow in question. However, because of the coupling and non-linearity of
the governing equations, it is very difficult to predict the convergence behaviour. A mathematical
analysis of the effect of flow direction on the convergence rates of line relaxation techniques (on
constant coefficient matrices) is presented in Reference 14.

The numbers of iterations using the GMRES and CG algorithms are presented in Table I1 and 111 for
different inner iteration combinations (implementing the GMRES algorithm on a 144 x 144 mesh
problem requires mor than 4 MB of memory). Determining the exact sweep or inner iteration pattern
for optimal convergence is obviously very difficult. There is a trade-off between the gain in
convergence rate and the increased time spent in the equation solver. However, as explained above, the
objective is to keep these to a minimum. The results clearly show the superiority of the CG algorithm

232 B. A. T A W 1 AND R. W. THATCHER

Table I. Comparison of TDMA and SGS

No. of sweeps TDMA SGS

Grid size U

36 x 36 2
2
4
4
4

72 x 72 2
4

144 x 144 4

V PI Iterations Time Iterations Time

2 3 123 176.8 176 241.6
2 6 103 168.2 124 186.4
4 6 89 169.7 113 184.2
4 8 77 155.3 101 171.2
4 12 65 148.1 85 155.2
2 6 262 1737.9 372 2270.9
4 12 168 1556.6 240 1781.0
4 12 558 2 1235.9 885 26947.8

Table 11. Performance of CG algorithm

kax

Grid size U V PI Iterations for convergence Time (s)

36 x 36 1 1 3 58 129.2
2 2 3 57 153.5

72 x 72 1 1 3 116 1058.1
2 2 3 94 1039.3

144 x 144 2 2 3 267 12086.8

Table 111. Performance of GMRES algorithm

m

Grid size U V PI Iterations for convergence Time (s)

36 x 36 1 1 3 71 214.6
2 2 3 65 232.7
2 2 6 64 298.9
4 4 6 62 368.6
4 4 12 62 548.4

72 x 72 1 1 3 136 1695.4
2 2 3 110 1629.1
2 2 6 I02 1974.6
4 4 12 91 3348.5

for the test problem. Each GMRES iteration is approximately 1.5 times a CG iteration. The
performances of the Krylov solvers are, however, heavily dependent on the particular preconditioner
used and the test problem in question.” To study the effect of the preconditioner used here on the
convergence rates, the application was run using both Krylov solvers but with point Jacobi iteration as
the sole preconditioner. Figures 3 and 4 show the variation in the normalized mass source resor,,, with
iteration number on a 72 x 72 mesh problem using the same iteration patterns on both solvers and
Table IV presents the relative computational efforts and iterations for convergence for the other
meshes. It is worth mentioning that restarting the GMRES iteration resulted in insignificant
convergence improvements and was too expensive to be of practical use for the test problem.

ITERATWE SOLUTION OF INCOMPRESSIBLE N-S EQUATIONS 233

Figure 3. Effect of SGS preconditioning on convergence rate of CG algorithm

80 m 100 120 20 40
Ilr;llpnMlba

Figure 4. Effect of SGS preconditioning on convergence rate of GMRES algorithm

Table IV. Effect of preconditioning on CG and GMRES algorithms

DS only DS and SGS

Time (s) Solver Grid size Iterations Time (s) Iterations

CG 36 x 36 195 359.8 57 153.5
72 x 72 756 5599.7 94 1039.3

144 x 144 2636 80296.4 267 12086.8
GMRES 36 x 36 199 465.1 65 232.7

72 x 72 1123 107 12.2 110 1629.1

5 . CONCURRENT IMPLEMENTATION

The parallelization of the overall fluid flow procedure can be broadly divided into three parts:
coefficient assembly, equation solving and global convergence monitoring. The strategy adopted here
is a domain decomposition The solution domain is split up into non-overlapping
subdomains in such a way that no control volume belongs to more than one subdomain. For the test

234 B. A. TANYI AND R. W. THATCHER

problem the domain can be split into the vertical or horizontal strips or into tiles with each subdomain
allocated to a separate processor (Figure 5). Each processor forms and solves the discrete linear
systems for control volumes within its subdomain.

Our parallelization strategy is based on data parallelism. The same programme runs on each
processor with different data. The idea (or aim) behind the strategy is to run the subdomains in parallel
and, with the communication of halo data, obtain coefficients and hence flow fields that at any stage in
the execution are equal to those obtained at that same stage in the serial implementation. This can be
viewed as dividing the equation system generated by the serial implementation into subsystems each
running on a separate chip. In order to approximate the exact serial algorithm, the same relaxation
parameters are used in each subdomain (processor) with the same number of 'sweeps' or inner
iterations of the equation so~ver . ' ~* '~

For the five-point control volume scheme, control volumes next to the subdomain boundaries
require data from the neighbouring processors to form the complete discrete coefficients on the
respective processors. This is slightly complicated by the staggered grid system used, which introduces
a diagonal data dependence alongside the nearest-neighbour data dependence. Thus processor 5 in
Figure 5(a), for example, require data from processors 1, 9, 3 and 7 alongside those required from
processors 2, 4, 6 and 8. For the processor interconnection scheme described in Figure 5(b), these
diagonal transfers introduce a synchronization problem since the data must first be moved onto a
nearest-neighbour processor before their final destination.

The line Gauss-Seidel iteration uses the latest cell approximations as the line sweeps progress. Any
attempt to 'fully parallelize' the global algorithm reduces to a sequential implementation. If the line
solver were to be strictly applied, then a consideration of Figure 5(a) shows that the processors would
have to be synchronized in such a way that processors 2, 5 and 8 would wait for the calculations on
processors I , 4, and 7 to be completed. Furthermore, processor 4 would have to halt while the forward
recursion on processor 7 proceeded for a given line, while processor 7 would similarly be blocked
before the backward recursion had been completed on processor 4 in the following step, etc. Here three
strategies for parallelized line Gauss-Seidel iteration are explored.

The first strategy (Strategy I) involves applying the solver to the local systems and updating halo
data only on completion of each line sweep. The second strategy (Strategy 11) attempts to simulate the
global sequential algorithm by updating some of the lines using the most recent values calculated
during the current line sweep. These approximations of the equation solver in the distributed memory
environment result in convergence degradation because of the reduction of the solution implicitness
along the subdomain boundaries. In order to remedy this problem, the third strategy (Strategy 111)

7 8 9

Figure 5. Interprocessor communications for (a) local and (b) global data

235 ITERATIVE SOLUTION OF INCOMPRESSIBLE N-S EQUATIONS

Strategy I1

do i = 1 , n i

update l i n e i i n t h e s v e e p d i r e c t i o n

i f (i = l) t h e n
if (proc. is not i n col. 1) then

Tx. values on line 1 t o proc. on l e f t .

if (proc. i s not i n l a s t c o l .) then

end if

Rx. halo. data from proc. on r ight .

Rx. halo. data from proc. on right.

else

end if
end if

end do

updateboundariesthathavenotbeenupdated

overlaps the subdomains such that each processor solves an extra column of control volumes on the
neighbouring processor’s subdomain with halo data updated as in the second strategy described above.
Thus, in Figure 5(a), processor 5 solves 16 extra control volumes and processor 4 solves 12 extra
control volumes, etc.

The ‘red-black’ version of the solver is fully parallelizable if implemented within a slab
decomposition. However, for tile decompositions some of the boundary nodes are updated using data
fiom the previous sweep, thus decreasing the convergence rate of the solution procedure. This, coupled
with the slow convergence rate of the red-black scheme, made it impractical for tile decompo~itions.~
The line Jacobi iteration is also hlly parallelizable, but the slow convergence rate made it too
expensive for practical application^.^

On the other hand, the CG algorithm in its original form (i.e. without preconditioning) is fully
explicit, with the main components being hlly parallelizable. However, some of these components
require global communications. The main components are the formation of inner products, matrix-
vector multiplication and vector updates. Inner product formation is the most inefficient operation in
the CG algorithm since it requires global communications. Each processor forms the inner product
contribution for control volumes within its subdomain and uses the processor row and column rings
(Figure 5@)) to form the global value as described earlier. Matrix-vector multiplication requires only
near-neighbour communications. Using the notation of equation (2), [A - +Ip = ap4p - 1
where n b = E , W, N, S. This means that 4 is required from the neighbouring processors. Vector
updates are filly local operations requiring no communications.

From the domain decomposition scheme used, the point Jacobi preconditioning operation is fully
local, requiring no communications. The SGS preconditioning can be implemented using any of the
strategies described above. However, for the test problem, updating subdomain boundaries did not
result in any significant covergence improvement. The SGS preconditioning implementation here is
therefore filly local, requiring no communications.

236 B. A. TANYI AND R. W. THATCHER

The global convergence monitoring is performed after each outer or non-linear iteration. Each
processor forms the residual contribution for control volumes within its subdomain and, using the
global communication scheme described above, forms the global residual.

6. RESULTS OF TEST CALCULATION

6. I. Performance evaluation

We saw earlier that the efficient implementation of an algorithm on a distributed memory
architecture may require modifications to the original serial implementation. As a result of the possible
differences in the serial and parallel implementations, a number of performance parameters are
generally employed to measure various aspects of the concurrent implementation. Here we define the
efficiency of a parallel implementation as

m

' 1

nT,, '
& = -

where TI is the execution time for the best serial algorithm and T,, is the time taken by the parallel
implementation using n processors. The efficiency is generally less than unity because of losses arising
from interprocessor communications, load balancing, extra effort for overlap regions, etc.

If cv, and cvy are respectively the number of control volumes in the x- and y-directions of the
solution domain, top is the time for one floating point operation and in is the average number of floating
point operations per outer iteration, then the time taken by the parallel implementation using n
processors can be written as

cv,cvy
n T,, = - topi,,itn, + tComitn,,,

where tcom is the communication time per outer iteration and itnn is the number of outer iterations
required for the same convergence as the best sequential algorithm. Substituting equation (13) into
equation (12), we get

kl 1
k, 1 + tcom/tcaln '

& = -

-
- & n m & p a r

where
k, itn,il
k,, itn,i,,

En,, = - = -,

The quantities kl and k, are respectively the number of floating point operations required by the serial
and parallel implementations to reach a converged solution. In equation (14), tcal, = cvxcv,,topin/n.
Equation (1 4) can be written as

kl 1
k,,l + O + C

& = -

where 0 and C are respectively the overlapping and communication penalties. From the above
analysis, E,,, = 1 if the parallel implementation uses non-overlapping subdomains and itnl = itn,. This
parameter does not depend on the performance characteristics of the computer. The parallel efficiency

ITERATIVE SOLUTION OF INCOMPRESSIBLE N-S EQUATIONS 237

c + , ~ gives a measure of the communication and synchronization overhead of the concurrent algorithm
and from the above can be measured by fixing the number of outer iterations to be the same for both
the parallel and serial implementations (in which cae E,, = 1 and E = Equation (1 8) is generally
referred to as the total efficiency hot and is a measure of the success of the overall concurrent
implementation. From this equation the communication and overlapping penalties become smaller as
the problem gets bigger, with everything else fixed. Thus for a large enough problem the main
departure from a linear performance will derive from any reduction in the convergence rate that may
result.

6.2. Square cavity flow results

Although the effect of the decoupling between the subdomains introduced by the approximation of
the parallelized Gauss-Seidel iteration cannot be predicted because of the nature of the governing
equations, experience shows that the rate of convergence of the parallel algorithm is mostly affected by
the ratio of the number of inner boundary nodes to the total number of nodes. Thus for a given number
of processors the rate of convergence is less affected on a finer mesh. Therefore, to appreciate the
performances of the concurrent line Gauss-Seidel strategies described above, they were tested on a
coarse mesh (36 x 36) with a maximum of 36 processors (giving a minimum subproblem of size
6 x 6). The iterations for convergence and computational efforts (in seconds) are presented in Table V.
For strategy 111 the extra cost incurred in solving the overalp nodes more than compensates for the
convergence improvement. Therefore, for the test problem here, strategy I1 appears to be the most
suitable and is used in the rest of this paper.

Unlike the implicit Gauss-Seidel iteration, the CG algorithm in its original form is fully explicit,
with the main components being fully parallelizable. Also, the point Jacobi preconditioning step has no
communication overheads. Thus a parallel implementation of the CG algorithm with diagonal scaling
as the sole preconditioner converges in the same number of iterations (as the serial implementation) on
any number of processors or processor configuration. Figure 6 presents the variation in the normalized
absolute mass source resor, with time for different numbers of processors on a 36 x 36 mesh
problem. The symmetric Gauss-Seidel (SGS) preconditioning used to accelerate the CG algorithm
introduces the convergence problems mentioned above. However, for the test problem used, a fully
local application of the preconditioner (i.e. no communications between neighbouing processors)
resulted in approximately the same number of iterations as that employing any of the coupling
strategies described above. To minimize communication costs, the SGS preconditioning implementa-
tion here is fully local.

A direct comparison of the equation solvers is very difficult considering the large number of
parameters involved for optimal performance. Our comparison here is based on the results of the

Table V. TDMA coupling strategies

Processor
configuration Strategy I Strategy I1 Strategy 111

nproc xpmc yPrw Iterations Time Iterations Time Iterations Time

1 1 1 65 148.1 65 148.1 65 148.1
4 2 2 66 40.1 66 40.1 65 42.9
8 2 4 67 22.5 67 22.5 66 27.1

4 2 66 22.4 64 21.7 65 26.9
16 4 4 68 13.8 66 13.4 66 17.3
36 6 6 81 10.2 68 8.5 66 11.2

238 B. A. TAW1 AND R. W. THATCHER

Figure 6 . Convergence behaviour using point Jacobi preconditioner

'--I I

LS - 1 U x l U

m:,: .

Figure 7. Relative convergence rates of TDMA(LS) and CG algorithms

10'

. I

. . 7 b. i ;.:.. :... .. .:;.. i

..

Figure 8. Relative computational efforts

ITERATIVE SOLUTION OF INCOMPRESSIBLE N-S EQUATIONS 239

Table W. Parallel efficiencies (%) of laminar flow procedure

144 x 144 grid 72 x 12 grid 36 x 36 grid

nP= LS CG LS CG LS CG

1 100 100 100 100 100 100
4 98.9 98.1 96.5 95-7 93.0 89.9

16 98.7 98.0 89.8 88.2 69.6 67.6
36 94.2 93.8 80-0 74.4
48 92.1 90.0 78.1 72.4 - -

- -

parallel implementation of the optimal sequential results presented above for each mesh and solver.
The main objective behind the use of parallel processing is the reduction of the execution time of an
implementation. The numbers of iterations for convergence and the computational efforts of the
optimal sequential implementation on multiple processors using both equation solvers are presented in
Figures 7 and 8. The computed parallel efficiencies ~p~ are presented in Table VI for both solvers (~p..
is evaluated using itnl = itn,). The global communication overhead in the CG algorithm is evident in
the results.

7. CONCLUSIONS

The effectiveness of the generalized CG algorithm for linear systems has been demonstrated for a
laminar recirculatory flow problem using a very simple preconditioner. The uni- and multiprocessor
performance of the algorithnm was compared with that of traditional line Gauss-Seidel iteration. We
also compared its uniprocessor performance with that of a similar Krylov solver for non-symmetric
systems-the GMRES algorithm. For the test problem used, the line Gauss-Seidel solver has the
lowest cost per outer iteration, but this advantage is lost by the extremely slow convergence rate. The
convergence rates of the generalized CG algorithm and the GMRES iteration are very close, with each
outer iteration of the latter being approximately 1.5 times more expensive.

Parallelization of the line Gauss-Seidel iteration results in convergence degradation because of the
reduction of the solution implicitness along the subdomain boundaries. Three strategies for dealing
with this problem have been presented and compared. Obviously the choice of strategy will depend on
the test problem used. On the other hand, the generalized CG algorithm in its original form is fully
explicit, but requires global communications in a distributed memory parallel environment. However, it
has been demonstrated that for a large enough problem these communication overheads are minimal.

ACKNOWLEDGEMENT

The authors would ldce to thank Dr. David Golby of the Department of Mechanical Engineering at
UMIST for his useful ideas and suggestions throughout the course of this work.

REFERENCES

1 . S. V Patankar, Numerical Heat Tmmfer and Fluid Flow, Hemisphere, Washington, DC, 1980.
2. I? Concus and G. H. Golub, ‘A generalised conjugate gradient method for non-symmetric systems of linear equations’, in R.

Glowinski and J. L. Lions (eds), Computing Methods in Applied Sciences and Engineering. Lecture Notes in Economics and
Mathematical Systems, Vol. 134, Springer, Berlin, 1976, pp. 5 M 5 .

240 B. A. TANYl AND R. W. THATCHER

3.
4.

5.

6.

7.
8.

9.

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

B. E. Launder and D. B. Spalding, Mathematical Models of lhrbulence, Academic, London, 1972.
A. D. Gosman and F. 1. K. Ideriah, ‘TEACH-T: a general computer program for two-dimensional, turbulent, recirculatory
flows’, RepME-952-76. Department of Mechanical Engineering, Imperial College, London, 1976.
B. A. Tanyi, ‘Itelative solution of the incompressible Navier-Stokes equations on a d h b u t e d memory parallel computer’.
Ph.D Thesis, University of Manchester lnstitute of Science and Technology, 1993.
G. D. Smith, Numerical Solution of Partial Diflerential Equations: Finite Diffemnce Methods, 3rd edn, Oxford University
Press, Oxford, 1985.
G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd edn, Johns Hopkins University Press, Baltimore, MD, 1989.
Y. Saad and M. H. Shultz, ‘A generalized minimal residual algorithm for solving non-symmetric linear systems’, S U M 1
Sci. Slat Comput., I, 856-869 (1986).
E Shakib, T. J. R. Hughes and Z. Johan, ‘A multi-element group preconditioned GMRES algorithm for non-symmetric
systems arising in finite element analysis’, Internal Rep., Institute for Computer Methods in Applied Mechanics and
Engineering, Stanford University, 1988; Methods Appl. Mech. Eng., in press; Pmc. IMA Workshop on Itemtive Methods, in
press.
X . Xu and B. E. Richards, ‘a-GMRES: a new parallelisable iterative solver for large sparse non-lineaer systems arising from
CFD’, GU Aero Rep. 91 10, Department of Aerospace Engineering, University of Glasgow, 1991.
B. No11 and S. Wittig, ‘Generalised conjugate gradient method for the efficient solution of three-dimensional fluid flow
problems’, Numer Heat Tmnsjer B, 20, 207-221 (1991).
B. R. Latimer and A. Pollard, ‘Comparison of pressure-velocity coupling solution algorithms’, Numer Heat Transfer, 8,
635-652 (1985).
CSTools Reference Manual, Meiko, Bristol, 1989.
H. C. E h a n and M. P. Chemesky, ‘Ordering effects on relaxation methods applied to the discrete convect ion4fbion
equation’, Tech. Report UMIACS-TR-924, Institute for Advanced Computer Studies, University of Maryland, 1992.
J. N. Shadid and R. S. Tuminaro, ‘A comparison of preconditioned nonsymmetric Krylov methods on a large-scale MlMD
machine’, Rep. SAND91-0333, Sandia National Laboratories, Albuqueque, NM, 1991.
M. E. Braaten, ‘Development of a parallel computational fluid dynamics algorithm on a hypercube computer’, Inr. j. numer:
methodsfluids, 12, 947-963 (1991).
M. Hestenes and E. Stiefel, ‘Methods of conjugate gradients for solving linear systems’, 1 Res. Natl. Bur Stand. E, 49,409-
436 (1952).
E. Schreck and M. Peric, ‘Computation of fluid flow with a parallel multi-grid solver’, Rep. LSTM 327N91, University of
Erlangen, 1991.
B. A. Tan9 and R. W. Thatcher, ‘On the parallelisation of the TEACH-T code for computing fluid flows’, Tech. Rep. 216,
University of ManchesteriUMIST Joint Numerical Analysis Reports, 1992.
B. A. Tanyi and R. W. Thatcher, ‘Fluid flow calculation on a distributed memory parallel computer’, in K. 1. McKinnon and
F. Plab (eds), Proc. Second Worhhop on Pamllel Numerical Analysis, EPCC-TR92-22, Edinburgh, June 1992.

