
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 22,225-240 (1 996) 

ITERATIVE SOLUTION OF THE INCOMPRESSIBLE 

SURFACE 
NAVIER-STOKES EQUATIONS ON THE MEIKO COMPUTING 

B. A. TANYI* AND R. W. THATCHER 
Manchester Centre for Computational Mathematics, Department of Mathematics, UMIST, Manchestec UK. 

SUMMARY 

The numerical discretization of the equations governing fluid flow results in coupled, quasi-linear and non- 
symmetric systems. Various approaches exist for resolving the non-linearity and couplings. During each non-linear 
iteration, nominally linear systems are solved for each of the flow variables. Line relaxation techniques are 
traditionally employed for solving these systems. However, they could be very expensive for realistic applications 
and present serious synchronization problems in a distributed memory parallel environment. In this paper the 
discrete linear systems are solved using the generalized conjugate gtadient method of Concus and Golub. The 
performance of this algorithm is compared with the line Gauss-Seidel algorithm for laminar recirculatory flow in 
uni- and multiprocessor environments. The uniprocessor performances of these algorithms are also compared with 
that of a popular iterative solver for non-symmetric systems (the Gh4RES algorithm). 
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1 .  INTRODUCTION 

Computational fluid dynamics (CFD) is a major application area of high-performance computing. 
Despite recent advances in both hardware and software design, realistic simulations still require long 
run times. Using the most sophisticated machine and software tools on inefficient algorithms or poor 
solution procedures blurs the potential gains of the resources. A better appreciation of the benefits of 
such resources therefore requires research into improving the basic solution procedures. 

There are various ways of pursuing parallelism; the one described here uses identical copies of the 
programme running in parallel on each processor acting on a local data subset. For the target machine 
(the Meiko Computing Surface) each processor has its own local memory and thus the global solution 
is realized by occasional data exchanges (communications) between the processors. This geometric 
decomposition, generally referred to as domain decomposition, is particularly suitable for porting CFD 
applications onto distributed memory machines because of the local character of the governing 
differential operator. Generally, however, the main bottleneck with such machines is the cost of 
effecting global communications necessitated by, for example, the formation of inner products in the 
conjugate gradient algorithm or parallel convergence monitoring. Also, depending on the nature of the 
algorithm being parallelized, it may be necessary for a rethinking of the sequential algorithm in a 
parallel environment. Because of the possible differences in the sequential and parallel implementa- 
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tions, the numerical efficiency E,, is generally employed to measure the convergence rate of the 
parallel implementation and the parallel efficiency cpar is used to measure the success of the 
interprocessor communications, load balancing, etc. 

In this paper the incompressible Navier-Stokes equation is solved using a pressure-correction-based 
(SIMPLE-type) procedure.’ During each non-linear iteration, approximate solutions to the nominally 
linear discrete systems are obtained using the CG a lg~r i thm.~~”  Here we accelerate the algorithm using 
a very simple preconditioner and compare its performance with the traditional tridiagonal matrix 
algorithm (TDMA) in uni- and multiprocessor distributed memory environments. To appreciate the 
effectiveness of the CG algorithm, we implemented and compared its convergence rate with that of a 
similar solver (the GMRES algorithm) with the same preconditioner on a laminar recirculatory flow 
problem. 

2. NUMERICAL FORMULATION AND SOLUTION PROCEDURE 

The fluid flow algorithm employed in this study is capable of solving twodimensional laminar and 
turbulent incompressible flows. The standard k--E model of Launder and Spalding3 is used with the wall 
function approach for near-wall  region^.^,^ The general differential equation governing the transport of 
the general flow variable 4 can be written in Cartesian co-ordinates in the form 

where u and v are the velocity components in the two co-ordinate directions, r is the diffusion 
coefficient and S+ is the source term for the variable 4. Thus, from the above, turbulent flow modelling 
requires solving five dependent variables: the x- and y-momentum equations, the continuity constraint 
and the turbulent kinetic energy and dissipation equations (k and E respectively). In a laminar flow 
situation only the first three variables are considered. 

The solution domain is discretized into finite volume cells.’ A staggered grid system is adopted 
where scalar variables (e.g. pressure, density) are located at the centre of the control volumes and the 
velocity components are located at the faces of the control  volume^."^ The combined convection and 
diffusion fluxes across the control volume faces are computed using the hybrid scheme.’ For each 
control volume the finite volume scheme results in an algebraic equation of the form 

‘PQP = a n b 4 n b + S U *  
nb=E.W.N.S 

for each dependent variable, where 4 = u, v, k, E or p‘ (see below). The discrete coefficients are such 
that 

up = anb -sPv 
nb=E.W,N,S 

(3) 

where Sp is the coefficient of dP in the source term linearization expression and is chosen such that S, 
is unconditionally negative. Su includes the constant part of the discrete form of the original source 
term in equation (1) plus the additional terms that cannot be approximated by the values of 4 at the 
neighbouring grid nodes (E, W, N, S). The term r$p refers to the grid point at the centre of the control 
volume. Thus for all the grid points the following system results: 

B+ = C, (4) 

where B is the pentadiagonal coefficient matrix in which all spatial couplings depending on the 
convective and diffusive transport of 4 are involved and c contains the Dirichlet boundary conditions 
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as well as couplings that are not considered in B. Here a pressure correction scheme is employed, the 
full details of which are given in References 1 and 5 .  The momentum equations are solved for a given 
pressure distribution p* to yield a tentative velocity field u*, v*. Since u* and v* do not satisfy the 
continuity constraint, they and the guessed pressure must be updated. This involves solving a pressure 
correction equation @'-equation). For turbulent flow, solution of the p'-equation is followed by solution 
of the turbulent kinetic energy and dissipation equations. A complete execution of each of the above 
steps constitutes a non-linear or outer iteration. The process is repeated with the corrected pressure as 
the new guessed pressure until convergence. Global convergence monitoring takes place after each 
non-linear iteration as described later. 

Because of the non-linearities and couplings, underrelaxation is necessary. It is introduced in the 
following way: 

where 0 < -o < 1 is the underrelaxation factor. The value of -o strongly influences the convergence rate 
of the outer iteration, but in general an optimal value can only be found experimentally. In the notation 
of equation (4) the resulting system solved for the (n + 1)th iteration is 

( B + T D ) & ' + '  =c+-D$"' 1 --o 
0 

where D is the diagonal matrix whose elements are those of the main diagonal of matrix B in equation 
(4). Equation (6) can be written as 

A+"+' = b. (7) 

Since 0 < -o < 1, the diagonal dominance of matrix A is enhanced by the above underrelaxation 
procedure. During each non-linear iteration, systems such as (7) are solved for each of the flow 
variables. Line relaxation techniques are generally employed for solving such systems. 

We consider the portion of the Cartesian grid illustrated in Figure 1. The points P, E, W, N and S are 
grid nodes on the vertical grid lines. Focusing attention on grid line i, in the x-direction the discrete 
equation for points on this line can be written in the form 

aj41 = 8j4j+1 + ~ jb j - I  + (8) 

where, from equation (2), aJ = up, p, = uN, y, = as and T, = uE& + uw4w + S,. The grid system 
employed here is such that and bNJ are known for an NI x NJ grid. Thus for j = 2 to NJ - 1 a 
system of the form 

-Y2 a2 -82 

-Y3 a3 -83 
-Y4 a4 -84 i 

results for points on line i. 
The line-by-line solution procedure begins with a guess of the $-values over the whole grid. These 

are then improved from one line to the next. When solving any particular line, the values of 4 on the 
neighbouring lines are their latest &values or initial guessed values; thus the TS are known. The 
tridiagonal systems for each grid line are solved using the tridiagonal matrix algorithm (see References 
1 and 6 for details). Depending on the nature of the flow situation, it may be necessary to implement 
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Figure 1. Vertical grid line 

different directions of traverse across the flow domain (e.g. in ADI). For each flow variable a tentative 
solution is obtained by employing a number of ‘line sweeps’, the optimal number (which can only be 
obtained experimentally) depending on the grid size and the flow variable in question. 

Despite the reliability and ease of implementation of line relaxation techniques, they can be very 
time-consuming for realistic applications. As a result, researchers are turning towards Krylov or 
conjugate direction methods. However, since systems such as equation (7) are in general non- 
symmetric (except for the pressure correction system’s4, the standard CG algorithm for symmetric, 
positive definite systems7 is inapplicable. A number of algorithms have been developed for general 
non-symmetric systems. Two such algorithms were used in this study; they are the GMRES algorithm 
of Saad and Shultz’ and the conjugate gradient (CG) algorithm for linear systems developed by 
Concus and Golub.2 

Each iteration of the GMRES algorithm, i.e. steps 2-4 in Algorithm 1, consists of two main steps. 
The first step is an Arnoldi step which consists of finding an orthogonal basis of the Krylov subspace 
K, via Gram-Schmidt orthogonalization. The second step involves finding the approximate solution 
x, in the affine space (xg + K,) which minimizes the residual norm. This is found by solving the least 
squares problem whose coefficient matrix is the (rn + 1) x rn upper Hessenberg matrix H,. Because of 
the special structure of Hm,8s9 the least squares problem is solved by a QR factorization7 of matrix H, 
which is updated at each step of the Arnoldi process in step 2. The details of the practical 
implementation of the algorithm are explained in References 9 and 10. 

The performance of the GMRES algorithm generally depends on the number of steps performed 
between restarts rn. Large values of rn are expected to yield faster convergence but require more storage 
and more time per iteration. A compromise between the two is therefore necessary. For fluid flow 
problems the dimension of the Krylov subspace does not need to be Large, since we seek only a 
tentative improvement in the solution during each outer iteration. In the implementation of the GMRES 
algorithm here the value of rn was fixed, with a different value (possibly) for each of the flow variables 
solved. 

As in the implementation of the GMRES algorithm described above, & in the CG algorithm is 
kept small during each non-linear iteration, with a different value (generally) for each of the flow 
variables (Algorithm 2). The optimal vlaues for rn and k,,,= can only be obtained experimentally and 
are usually a fimction of the grid size and the flow variable being solved. A residual termination 
criterion can be used to control these values, but the strong non-linearity and coupling often result in 
erratic residual patterns. I 
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Algorithm 1 - GMRES algorithm 

1 .  Start  : choose an i n i t i a l  solution and a 

2. Arnoldi process : 
dimensionrn oftheKrylov subspace 

solve M b  = (h - A%) f o r  ro 

* f o r j  = 1,2 ,...., mdo 
set B = llbll and = r o / P  

solve M w  = A y j  f o r  w 
fori = 1,2 ,...., jdo 

endfor 
hi, = ( w ~ v ; )  

Cj+r  = w - X:=i h,,jv, 
hj+r j  = llcj+1 I1 
'j+l = ~ j + ~ / h j + 1 , ~  

endfor 
f * Define H,as the (m + 1) by m upper Hessenberg matrix 

whose non - zero entr ies  are the coef f ic ients  hi,, 
3. Formthe approximate so lut ion:  

f ind the vector which minimizes llPer - H,yII, 

compute x,,, = F,, + Y,ym 
where e, = [1,0,0, ..., 0IT 

/ * Y, = [vr,vz, ... v,] * f 
4. Restart : if s a t i s f i e d  stop, e l s e  s e t  xo t x, 

and goto step 2 

Preconditioning is crucial in the performance of Krylov solvers. Two simple preconditioners were 
employed in this study. We implemented both the point Jacobi and symmetric line Gauss-Seidel 
algorithms as preconditioners. The matrix M in the GMRES and CG algorithms is the preconditioning 
matrix. Concus and Golub' assumed a positive definite matrix M, but this assumption is not 
necessary.'' If the matrix A in equation (7) is split into its lower triangular, diagonal and upper 
triangular parts, i.e. A = L + D + U, then the Jacobi method corresponds to M =  D. The symmetric line 
Gauss-Seidel preconditioning employed here involved applying the TDMA line solver described 
above in alternating directions in the horizontal plane. Implementation details and a more mathematical 
presentation are described in Reference 5 .  

The global convergence is assessed at the end of each non-linear iteration on the basis of a 'residual 
source' criterion. The iterative procedure is considered to have converged if the sum of the absolute 
normalized residuals for u, v and all the variables as well as the mass source of the pressure correction 
system is less than a prescribed tolerance: 

max(resor,, resor,, resor,,,, . . .) < tol, (9) 

where 

resorm = (C "u) ,  - (PU),lA.Y + by) ,  - (PV),l~I)/Min. (1 1) 

Here e, w, n and s are the faces of the control volume and Ax x Ay x 1 is its volume. Fin,,#, and Mi, are 
respectively the characteristic momentum and mass flow scales4 
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/ 
/ 

Re = p u l , d L / p  = 200 
Ui,d = 0.2 
p = 1000 u = o  
p = l  o = o  
L = l  

/ 
/ 

3. PROBLEM SPECIFICATION AND PROGRAMMING ENVIRONMENT 

The test problem used here is that of laminar flow in a square lid-driven cavity. The problem 
specification is depicted in Figure 2. The lid slides across the cavity, inducing a zone of recirculatory 
fluid. If the grid is sufficiently h e ,  small counter-rotating eddies can be expected in the comers. The 
square cavity flow problem was chosen because of its highly recirculatory nature and the fact that the 
expected flow field is well understood (it has been studied by many workers; see e.g. Reference 12). 
Also, the singularity in the problem excites bad behaviour in an algorithm. The mesh sizes used are 
36 x 36, 72 x 72 and 144 x 144 with a regular distribution. 

u = o  u = o  

Figure 2. Flow specification 
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All the numerical results were obtained using the Meiko Computing Surface (MCS). The MCS is a 
distributed memory transputer-based machine with T800 transputers for which the link speed is 
20 Mbits s- ' .  A full description of this machine can be found in Reference 13. The programming 
language used here is FORTRAN. This was facilitated in the parallel implementations by the message- 
passing harness on the MCS called CSTOOIS;'~ it allows parallel implementations to be undertaken in 
FORTRAN or C. The distance between the processors is an important consideration when there is 
much interprocessor communication. The choice of an appropriate connection topology can reduce 
this overhead. For the square cavity solution domain the processor lay-out shown in Figure 5(b) (see 
Section 5 )  was employed. Each column and row of processors has a ring connection. These rings are 
used for implementing global communications. From the configuration this is a two-step process. First, 
all the processors in the same column form the partial sum for control volumes in their respective 
subdomains using a systolic loop. These partial sums are then added up across the rows to form the 
global variable on each processor. Interprocessor communications are effected via  transport^'^ and all 
the communications are of the blocked synchronous mode. 

4. SEQUENTIAL IMPLEMENTATION RESULTS 

Laminar flows are commonly used to test the performance of numerical algorithms, since the effects of 
the pressure-velocity coupling which usually controls the convergence of the algorithm are most 
clearly evident for such flows. For the segregated solution approach adopted in the fluid flow code used 
here, the convergence rate is a fimction of the underrelaxation factor w employed and the degree to 
which each of the variables is solved during each non-linear iteration. The optimal underrelaxation 
factor is usually a fimction of the mesh size. For the 36 x 36 mesh flow the optimal value is 
approximately 0.8 ( = w, = w,) and for the 72 x 72 and 144 x 144 grid problems it is approximately 
0.9 ( = w, = w,). The pressure correction system is not relaxed in the procedure used in the code 
(SIMPLEC). For all the results presented here, these values were used for all the iterative solvers-line 
Gauss-Seidel, GMRES and CG algorithms. 

Table 1-111 give the iterations for convergence of the various solvers for the same convergence 
criterion (to/= 0-5 x lop3) using different inner iteration combinations. The initial flow field used is 
uiJ = vij = lo-' and pi , ,  = 0. For pressure-correction-type procedures a higher number of iterations on 
the pressure correction system generally results in a faster and more stable solution.' Table I presents 
the numbers of iterations for various sweep combinations of the line Gauss-Seidel solver. Two 
implementations of this solver are reported. In the first (represented by TDMA) the Gauss-Seidel 
iteration is applied progressively on the vertical grid lines from the left of the solution domain to the 
right. In the other case (SGS, symmetric Gauss-Seidel) the iteration is applied in alternating directions, 
i.e. right to left, left to right, right to left, etc. The results show that sweeping successively from the left 
of the grid to the right maximizes the rate of flow of information across the solution domain for the test 
problem used here. The optimal application pattern of the line Gauss-Seidel iteration generally 
depends on the nature of the flow in question. However, because of the coupling and non-linearity of 
the governing equations, it is very difficult to predict the convergence behaviour. A mathematical 
analysis of the effect of flow direction on the convergence rates of line relaxation techniques (on 
constant coefficient matrices) is presented in Reference 14. 

The numbers of iterations using the GMRES and CG algorithms are presented in Table I1 and 111 for 
different inner iteration combinations (implementing the GMRES algorithm on a 144 x 144 mesh 
problem requires mor than 4 MB of memory). Determining the exact sweep or inner iteration pattern 
for optimal convergence is obviously very difficult. There is a trade-off between the gain in 
convergence rate and the increased time spent in the equation solver. However, as explained above, the 
objective is to keep these to a minimum. The results clearly show the superiority of the CG algorithm 
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Table I. Comparison of TDMA and SGS 

No. of sweeps TDMA SGS 

Grid size U 

36 x 36 2 
2 
4 
4 
4 

72 x 72 2 
4 

144 x 144 4 

V PI Iterations Time Iterations Time 

2 3 123 176.8 176 241.6 
2 6 103 168.2 124 186.4 
4 6 89 169.7 113 184.2 
4 8 77 155.3 101 171.2 
4 12 65 148.1 85 155.2 
2 6 262 1737.9 372 2270.9 
4 12 168 1556.6 240 1781.0 
4 12 558 2 1235.9 885 26947.8 

Table 11. Performance of CG algorithm 

kax 

Grid size U V PI Iterations for convergence Time (s) 

36 x 36 1 1 3 58 129.2 
2 2 3 57 153.5 

72 x 72 1 1 3 116 1058.1 
2 2 3 94 1039.3 

144 x 144 2 2 3 267 12086.8 

Table 111. Performance of GMRES algorithm 

m 

Grid size U V PI Iterations for convergence Time (s) 

36 x 36 1 1 3 71 214.6 
2 2 3 65 232.7 
2 2 6 64 298.9 
4 4 6 62 368.6 
4 4 12 62 548.4 

72 x 72 1 1 3 136 1695.4 
2 2 3 110 1629.1 
2 2 6 I02 1974.6 
4 4 12 91 3348.5 

for the test problem. Each GMRES iteration is approximately 1.5 times a CG iteration. The 
performances of the Krylov solvers are, however, heavily dependent on the particular preconditioner 
used and the test problem in question.” To study the effect of the preconditioner used here on the 
convergence rates, the application was run using both Krylov solvers but with point Jacobi iteration as 
the sole preconditioner. Figures 3 and 4 show the variation in the normalized mass source resor,,, with 
iteration number on a 72 x 72 mesh problem using the same iteration patterns on both solvers and 
Table IV presents the relative computational efforts and iterations for convergence for the other 
meshes. It is worth mentioning that restarting the GMRES iteration resulted in insignificant 
convergence improvements and was too expensive to be of practical use for the test problem. 
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Figure 3. Effect of SGS preconditioning on convergence rate of CG algorithm 

80 m 100 120 20 40 
Ilr;llpnMlba 

Figure 4. Effect of SGS preconditioning on convergence rate of GMRES algorithm 

Table IV. Effect of preconditioning on CG and GMRES algorithms 

DS only DS and SGS 

Time (s) Solver Grid size Iterations Time (s) Iterations 

CG 36 x 36 195 359.8 57 153.5 
72 x 72 756 5599.7 94 1039.3 

144 x 144 2636 80296.4 267 12086.8 
GMRES 36 x 36 199 465.1 65 232.7 

72 x 72 1123 107 12.2 110 1629.1 

5 .  CONCURRENT IMPLEMENTATION 

The parallelization of the overall fluid flow procedure can be broadly divided into three parts: 
coefficient assembly, equation solving and global convergence monitoring. The strategy adopted here 
is a domain decomposition The solution domain is split up into non-overlapping 
subdomains in such a way that no control volume belongs to more than one subdomain. For the test 
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problem the domain can be split into the vertical or horizontal strips or into tiles with each subdomain 
allocated to a separate processor (Figure 5). Each processor forms and solves the discrete linear 
systems for control volumes within its subdomain. 

Our parallelization strategy is based on data parallelism. The same programme runs on each 
processor with different data. The idea (or aim) behind the strategy is to run the subdomains in parallel 
and, with the communication of halo data, obtain coefficients and hence flow fields that at any stage in 
the execution are equal to those obtained at that same stage in the serial implementation. This can be 
viewed as dividing the equation system generated by the serial implementation into subsystems each 
running on a separate chip. In order to approximate the exact serial algorithm, the same relaxation 
parameters are used in each subdomain (processor) with the same number of 'sweeps' or inner 
iterations of the equation so~ver . ' ~* '~  

For the five-point control volume scheme, control volumes next to the subdomain boundaries 
require data from the neighbouring processors to form the complete discrete coefficients on the 
respective processors. This is slightly complicated by the staggered grid system used, which introduces 
a diagonal data dependence alongside the nearest-neighbour data dependence. Thus processor 5 in 
Figure 5(a), for example, require data from processors 1, 9, 3 and 7 alongside those required from 
processors 2, 4, 6 and 8. For the processor interconnection scheme described in Figure 5(b), these 
diagonal transfers introduce a synchronization problem since the data must first be moved onto a 
nearest-neighbour processor before their final destination. 

The line Gauss-Seidel iteration uses the latest cell approximations as the line sweeps progress. Any 
attempt to 'fully parallelize' the global algorithm reduces to a sequential implementation. If the line 
solver were to be strictly applied, then a consideration of Figure 5(a) shows that the processors would 
have to be synchronized in such a way that processors 2, 5 and 8 would wait for the calculations on 
processors I ,  4, and 7 to be completed. Furthermore, processor 4 would have to halt while the forward 
recursion on processor 7 proceeded for a given line, while processor 7 would similarly be blocked 
before the backward recursion had been completed on processor 4 in the following step, etc. Here three 
strategies for parallelized line Gauss-Seidel iteration are explored. 

The first strategy (Strategy I) involves applying the solver to the local systems and updating halo 
data only on completion of each line sweep. The second strategy (Strategy 11) attempts to simulate the 
global sequential algorithm by updating some of the lines using the most recent values calculated 
during the current line sweep. These approximations of the equation solver in the distributed memory 
environment result in convergence degradation because of the reduction of the solution implicitness 
along the subdomain boundaries. In order to remedy this problem, the third strategy (Strategy 111) 

7 8 9 

Figure 5.  Interprocessor communications for (a) local and (b) global data 
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Strategy I1 

do i = 1 , n i  

update l i n e  i i n t h e  s v e e p d i r e c t i o n  

i f ( i = l ) t h e n  
if ( proc. is not i n  col. 1 ) then 

Tx. values on line 1 t o  proc. on l e f t .  

if (proc. i s  not i n  l a s t  c o l .  ) then 

end if 

Rx. halo. data from proc. on r ight .  

Rx. halo. data from proc. on right. 

else 

end if 
end if 

end do 

updateboundariesthathavenotbeenupdated 

overlaps the subdomains such that each processor solves an extra column of control volumes on the 
neighbouring processor’s subdomain with halo data updated as in the second strategy described above. 
Thus, in Figure 5(a), processor 5 solves 16 extra control volumes and processor 4 solves 12 extra 
control volumes, etc. 

The ‘red-black’ version of the solver is fully parallelizable if implemented within a slab 
decomposition. However, for tile decompositions some of the boundary nodes are updated using data 
fiom the previous sweep, thus decreasing the convergence rate of the solution procedure. This, coupled 
with the slow convergence rate of the red-black scheme, made it impractical for tile decompo~itions.~ 
The line Jacobi iteration is also hlly parallelizable, but the slow convergence rate made it too 
expensive for practical  application^.^ 

On the other hand, the CG algorithm in its original form (i.e. without preconditioning) is fully 
explicit, with the main components being hlly parallelizable. However, some of these components 
require global communications. The main components are the formation of inner products, matrix- 
vector multiplication and vector updates. Inner product formation is the most inefficient operation in 
the CG algorithm since it requires global communications. Each processor forms the inner product 
contribution for control volumes within its subdomain and uses the processor row and column rings 
(Figure 5@))  to form the global value as described earlier. Matrix-vector multiplication requires only 
near-neighbour communications. Using the notation of equation (2), [A - +Ip = ap4p - 1 
where n b = E ,  W, N, S. This means that 4 is required from the neighbouring processors. Vector 
updates are filly local operations requiring no communications. 

From the domain decomposition scheme used, the point Jacobi preconditioning operation is fully 
local, requiring no communications. The SGS preconditioning can be implemented using any of the 
strategies described above. However, for the test problem, updating subdomain boundaries did not 
result in any significant covergence improvement. The SGS preconditioning implementation here is 
therefore filly local, requiring no communications. 
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The global convergence monitoring is performed after each outer or non-linear iteration. Each 
processor forms the residual contribution for control volumes within its subdomain and, using the 
global communication scheme described above, forms the global residual. 

6. RESULTS OF TEST CALCULATION 

6. I. Performance evaluation 

We saw earlier that the efficient implementation of an algorithm on a distributed memory 
architecture may require modifications to the original serial implementation. As a result of the possible 
differences in the serial and parallel implementations, a number of performance parameters are 
generally employed to measure various aspects of the concurrent implementation. Here we define the 
efficiency of a parallel implementation as 

m 

' 1  

nT,, ' 
& = -  

where TI is the execution time for the best serial algorithm and T,, is the time taken by the parallel 
implementation using n processors. The efficiency is generally less than unity because of losses arising 
from interprocessor communications, load balancing, extra effort for overlap regions, etc. 

If cv, and cvy are respectively the number of control volumes in the x- and y-directions of the 
solution domain, top is the time for one floating point operation and in is the average number of floating 
point operations per outer iteration, then the time taken by the parallel implementation using n 
processors can be written as 

cv,cvy 
n T,, = - topi,,itn, + tComitn,,, 

where tcom is the communication time per outer iteration and itnn is the number of outer iterations 
required for the same convergence as the best sequential algorithm. Substituting equation (13) into 
equation (12), we get 

kl 1 
k, 1 + tcom/tcaln ' 

& = -  

- 
- & n m & p a r  

where 
k, itn,il 
k,, itn,i,, 

En,, = - = -, 

The quantities kl and k, are respectively the number of floating point operations required by the serial 
and parallel implementations to reach a converged solution. In equation (14), tcal, = cvxcv,,topin/n. 
Equation (1 4) can be written as 

kl 1 
k,,l + O + C  

& = -  

where 0 and C are respectively the overlapping and communication penalties. From the above 
analysis, E,,, = 1 if the parallel implementation uses non-overlapping subdomains and itnl = itn,. This 
parameter does not depend on the performance characteristics of the computer. The parallel efficiency 
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c + , ~  gives a measure of the communication and synchronization overhead of the concurrent algorithm 
and from the above can be measured by fixing the number of outer iterations to be the same for both 
the parallel and serial implementations (in which cae E,,  = 1 and E = Equation (1 8) is generally 
referred to as the total efficiency hot and is a measure of the success of the overall concurrent 
implementation. From this equation the communication and overlapping penalties become smaller as 
the problem gets bigger, with everything else fixed. Thus for a large enough problem the main 
departure from a linear performance will derive from any reduction in the convergence rate that may 
result. 

6.2. Square cavity flow results 

Although the effect of the decoupling between the subdomains introduced by the approximation of 
the parallelized Gauss-Seidel iteration cannot be predicted because of the nature of the governing 
equations, experience shows that the rate of convergence of the parallel algorithm is mostly affected by 
the ratio of the number of inner boundary nodes to the total number of nodes. Thus for a given number 
of processors the rate of convergence is less affected on a finer mesh. Therefore, to appreciate the 
performances of the concurrent line Gauss-Seidel strategies described above, they were tested on a 
coarse mesh (36 x 36) with a maximum of 36 processors (giving a minimum subproblem of size 
6 x 6). The iterations for convergence and computational efforts (in seconds) are presented in Table V. 
For strategy 111 the extra cost incurred in solving the overalp nodes more than compensates for the 
convergence improvement. Therefore, for the test problem here, strategy I1 appears to be the most 
suitable and is used in the rest of this paper. 

Unlike the implicit Gauss-Seidel iteration, the CG algorithm in its original form is fully explicit, 
with the main components being fully parallelizable. Also, the point Jacobi preconditioning step has no 
communication overheads. Thus a parallel implementation of the CG algorithm with diagonal scaling 
as the sole preconditioner converges in the same number of iterations (as the serial implementation) on 
any number of processors or processor configuration. Figure 6 presents the variation in the normalized 
absolute mass source resor, with time for different numbers of processors on a 36 x 36 mesh 
problem. The symmetric Gauss-Seidel (SGS) preconditioning used to accelerate the CG algorithm 
introduces the convergence problems mentioned above. However, for the test problem used, a fully 
local application of the preconditioner (i.e. no communications between neighbouing processors) 
resulted in approximately the same number of iterations as that employing any of the coupling 
strategies described above. To minimize communication costs, the SGS preconditioning implementa- 
tion here is fully local. 

A direct comparison of the equation solvers is very difficult considering the large number of 
parameters involved for optimal performance. Our comparison here is based on the results of the 

Table V. TDMA coupling strategies 

Processor 
configuration Strategy I Strategy I1 Strategy 111 

nproc xpmc yPrw Iterations Time Iterations Time Iterations Time 

1 1 1 65 148.1 65 148.1 65 148.1 
4 2 2 66 40.1 66 40.1 65 42.9 
8 2 4 67 22.5 67 22.5 66 27.1 

4 2 66 22.4 64 21.7 65 26.9 
16 4 4 68 13.8 66 13.4 66 17.3 
36 6 6 81 10.2 68 8.5 66 11.2 
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Figure 6 .  Convergence behaviour using point Jacobi preconditioner 
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Figure 7. Relative convergence rates of TDMA(LS) and CG algorithms 
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Figure 8. Relative computational efforts 
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Table W. Parallel efficiencies (%) of laminar flow procedure 

144 x 144 grid 72 x 12 grid 36 x 36 grid 

nP= LS CG LS CG LS CG 

1 100 100 100 100 100 100 
4 98.9 98.1 96.5 95-7 93.0 89.9 

16 98.7 98.0 89.8 88.2 69.6 67.6 
36 94.2 93.8 80-0 74.4 
48 92.1 90.0 78.1 72.4 - - 

- - 

parallel implementation of the optimal sequential results presented above for each mesh and solver. 
The main objective behind the use of parallel processing is the reduction of the execution time of an 
implementation. The numbers of iterations for convergence and the computational efforts of the 
optimal sequential implementation on multiple processors using both equation solvers are presented in 
Figures 7 and 8. The computed parallel efficiencies ~p~ are presented in Table VI for both solvers (~p.. 
is evaluated using itnl = itn,). The global communication overhead in the CG algorithm is evident in 
the results. 

7. CONCLUSIONS 

The effectiveness of the generalized CG algorithm for linear systems has been demonstrated for a 
laminar recirculatory flow problem using a very simple preconditioner. The uni- and multiprocessor 
performance of the algorithnm was compared with that of traditional line Gauss-Seidel iteration. We 
also compared its uniprocessor performance with that of a similar Krylov solver for non-symmetric 
systems-the GMRES algorithm. For the test problem used, the line Gauss-Seidel solver has the 
lowest cost per outer iteration, but this advantage is lost by the extremely slow convergence rate. The 
convergence rates of the generalized CG algorithm and the GMRES iteration are very close, with each 
outer iteration of the latter being approximately 1.5 times more expensive. 

Parallelization of the line Gauss-Seidel iteration results in convergence degradation because of the 
reduction of the solution implicitness along the subdomain boundaries. Three strategies for dealing 
with this problem have been presented and compared. Obviously the choice of strategy will depend on 
the test problem used. On the other hand, the generalized CG algorithm in its original form is fully 
explicit, but requires global communications in a distributed memory parallel environment. However, it 
has been demonstrated that for a large enough problem these communication overheads are minimal. 
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